Equations de droites en seconde
--- Introduction ---
Ce module regroupe pour l'instant 21 exercices de niveau
seconde sur les équations de droites et les systèmes 2x2.
Trouver l'abscisse d'un point
Le plan est rapporté à un repère orthonormal. Soient
la droite d'équation
et
le point d'ordonnée
. Déterminer l'abscisse
du point
dans le repère.
Equation réduite et équation cartésienne
On considère la droite
d'équation
. Déterminer de la droite
. de la droite
est
.
Equation réduite
Dans le plan muni d'un repère, on considère la droite
d'équation
Donner le coefficient directeur ainsi que l'ordonnée à l'origine de la droite
.
Equation de droites et vecteur directeur
Dans le plan muni d'un repère, on considère la droite
passant par le point
de coordonnées
et dirigée par le vecteur
de coordonnées
.
Déterminer une équation de la droite
x +
y +
=0
Oui,
est bien une équation de
, son équation réduite est :
x +
Equation de droites : lecture graphique
xrange=, yrange=, linewidth=1 parallel ,,,,,0,,green parallel ,,,,0,,,green linewidth=2 line 0,,0,,red line ,0,,0,red text green,0,0,small,0 text green,,0,small, text green,0,,small, linewidth=1 plot blue,*x+
Dans le plan muni d'un repère, on considère la droite
représentée ci-contre. Déterminer graphiquement l'ordonnée à l'origine et le coefficient directeur de cette droite. L'équation réduite de
est :
x +
Droite passant par deux points
Dans le plan muni d'un repère, on considère la droite
passant par les points :
et
. L'équation réduite de
est :
=
+
Parallèle à une droite
Dans le plan muni d'un repère, on considère la droite
d'équation
et la droite
, parallèle à
, passant par
. Déterminer les coordonnées du point d'intersection
de la droite
avec l'axe des :
(
;
)
Equation d'une droite
Cet exercice comporte deux étapes.
Dans le plan rapporté à un repère, on considère les points
et
.
La droite
est-elle
,
ou
?
Cliquer sur la bonne réponse.
Oui, la droite
est . Donner son équation.
=
Equations réduites et correspondances
Mettez en relation les équations de droites se correspondant:
Equations de droites - vocabulaire
Le plan est rapporté à un repère orthonormal
. Soit
la droite d'équation :
. Déterminer le coefficient directeur de la droite
et son ordonnée à l'origine.
Trouver l'ordonnée d'un point
Le plan est rapporté à un repère orthonormal. Soient
la droite d'équation
et
le point d'abscisse
. Déterminer l'ordonnée
du point
dans le repère.
Equation de la parallèle à une droite
Le plan est rapporté à un repère orthonormal. Soit
la droite d'équation:
. Déterminer l'équation réduite de la droite
parallèle à la droite
passant par le point
.
Equation cartésienne et parallèles
Déterminer
pour que les droites
et
d'équations respectives :
et
soient parallèles. Une valeur de
est
.
Sécantes ou parallèles ? (2)
Cet exercice comporte deux étapes.
Dans le plan muni d'un repère, on considère les droites
d'équation
et
d'équation
.
. Les droites sont
.
.
Point d'une droite
Dans le plan rapporté à un repère, on considère la droite
d'équation
. Pour quelle valeur de
, le point
de coordonnées
appartient-il à
?
Point à coordonnées entières
Déterminer un point
situé sur la droite
d'équation
, dont les coordonnées sont entières. Le point M(
;
) convient.
Droites sécantes
Le plan est rapporté à un repère orthonormal. Soient
et
les droites d'équations respectives
et
. On admet que les droites
et
sont sécantes en un point
. Déterminer les coordonnées du point
.
Sytème de trois équations à trois inconnues
Résoudre le système:
.
Indication: Les solutions sont entières.
Sytèmes concrets
Trois élèves vont acheter des bonbons: - achète , et et paye euros.
- achète , et et paye euros.
- achète , et et paye euros.
Déterminer le prix de chaque type de bonbons. - coûte
euros.
- coûte
euros.
- coûte
euros.
Système 2x2
Résoudre le système suivant :
Système 2x2 (solutions entières)
Résoudre le système suivant :
Cette page n'est pas dans son apparence habituelle parce que
WIMS n'a pas pu reconnaître votre navigateur de web.
Veuillez noter que les pages WIMS sont générées interactivement; elles ne
sont pas des fichiers
HTML ordinaires. Elles doivent être utilisées interactivement EN LIGNE.
Il est inutile pour vous de les ramasser par un programme robot.
Description: collection d'exercices demandant de trouver l'équation d'une droite à partir de diverses hypothèses. interactive exercises, online calculators and plotters, mathematical recreation and games
Keywords: interactive mathematics, interactive math, server side interactivity, nice sophia antipolis university, analysis, pbsolving,line_equation,linear_system, lines